On quasi-closed mixed groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1215-1224.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a description of mixed Abelian groups in which the closure in the $Z$-adic and $p$-adic topology for every prime $p$ of any pure subgroup is a direct summand of the initial group.
@article{FPM_2002_8_4_a17,
     author = {A. R. Chekhlov},
     title = {On quasi-closed mixed groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1215--1224},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a17/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - On quasi-closed mixed groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1215
EP  - 1224
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a17/
LA  - ru
ID  - FPM_2002_8_4_a17
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T On quasi-closed mixed groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1215-1224
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a17/
%G ru
%F FPM_2002_8_4_a17
A. R. Chekhlov. On quasi-closed mixed groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1215-1224. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a17/

[1] Mishina A. P., “Abelevy gruppy”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 17, VINITI, M., 1979, 3–63 | MR

[2] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974; Т. 2, Мир, М., 1977

[3] Chekhlov A. R., “O nekotorykh klassakh abelevykh grupp”, Abelevy gruppy i moduli, Tomsk, 1984, 137–152 | MR

[4] Chekhlov A. R., “Abelevy $CS$-gruppy bez krucheniya”, Abelevy gruppy i moduli, Tomsk, 1988, 131–147 | MR | Zbl

[5] Chekhlov A. R., “Ob abelevykh $CS$-gruppakh bez krucheniya”, Izv. vyssh. uchebn. zaved. Matematika, 1990, no. 3, 84–87 | MR | Zbl

[6] Chekhlov A. R., “Abelevy gruppy bez krucheniya konechnogo $p$-ranga c dopolnyaemymi zamknutymi servantnymi podgruppami”, Abelevy gruppy i moduli, Tomsk, 1991, 157–178 | MR

[7] Bekker I. Kh., Krylov P. A., Chekhlov A. R., “Abelevy gruppy bez krucheniya, blizkie k algebraicheski kompaktnym”, Abelevy gruppy i moduli, Tomsk, 1994, 3–52 | MR | Zbl