Zeroes of Schr\"odinger's radial function $R_{nl}(r)$ and Kummer's function ${}_1F_{1}(-a;c;z)$ ($n10$, $l4$)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1159-1178.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact formulae for calculation of zeroes of Kummer's polynomials at $a\le4$ are given; in other cases ($a>4$) their numerical values (to within $10^{-15}$) are given. It is shown that the methods of L. Ferrari, L. Euler and J.-L. Lagrange that are used for solving the equation ${}_1F_1(-4;c;z)=0$ are based on one (common for all methods) equation of cubic resolvent of FEL-type. For greater geometrical clarity of (nonuniform for $a>3$) distribution of zeroes $x_{k}=z_{k}-(c+a-1)$ on the axis $y=0$ the “circular” diagrams with the radius $R_{a}=(a-1)\sqrt {c+a-1}$ are introduced for the first time. It allows to notice some singularities of distribution of these zeroes and their “images”, i. e. the points $T_{k}$ on the circle. Exact “angle” asymptotics of the points $T_{k}$ for $2\le c\infty$ for the cases $a=3$ and $a=4$ are obtained. While calculating zeroes $x_{k}$ of the $R_{nl}(r)$ and ${}_1F_1$ functions, the “singular” cases $(a,c)=(4,6),(6,4),(8,14),\ldots$ are found.
@article{FPM_2002_8_4_a14,
     author = {V. F. Tarasov},
     title = {Zeroes of {Schr\"odinger's} radial function $R_{nl}(r)$ and {Kummer's} function ${}_1F_{1}(-a;c;z)$ ($n<10$, $l<4$)},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1159--1178},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a14/}
}
TY  - JOUR
AU  - V. F. Tarasov
TI  - Zeroes of Schr\"odinger's radial function $R_{nl}(r)$ and Kummer's function ${}_1F_{1}(-a;c;z)$ ($n<10$, $l<4$)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1159
EP  - 1178
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a14/
LA  - ru
ID  - FPM_2002_8_4_a14
ER  - 
%0 Journal Article
%A V. F. Tarasov
%T Zeroes of Schr\"odinger's radial function $R_{nl}(r)$ and Kummer's function ${}_1F_{1}(-a;c;z)$ ($n<10$, $l<4$)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1159-1178
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a14/
%G ru
%F FPM_2002_8_4_a14
V. F. Tarasov. Zeroes of Schr\"odinger's radial function $R_{nl}(r)$ and Kummer's function ${}_1F_{1}(-a;c;z)$ ($n<10$, $l<4$). Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1159-1178. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a14/

[1] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR | Zbl

[2] Bete G., Solpiter E., Kvantovaya mekhanika atomov s odnim i dvumya elektronami, Fizmatgiz, M., 1960

[3] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973

[4] Sokolov A. A., Ternov I. M., Zhukovskii V. Ch., Kvantovaya mekhanika, Nauka, M., 1979

[5] Van der Varden B. L., Algebra, Nauka, M., 1970

[6] Smirnov V. I., Kurs vysshei matematiki, T. 1, Fizmatgiz, M., 1962

[7] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1965

[8] Postnikov M. M., Teoriya Galua, Fizmatgiz, M., 1963

[9] Khamermesh M., Teoriya grupp i eë primenenie k fizicheskim problemam, Mir, M., 1966 | Zbl

[10] Burbaki N., Algebra, mnogochleny i polya, uporyadochennye gruppy, Nauka, M., 1965 | MR

[11] Kharari F., Palmer E., Perechislenie grafov, Mir, M., 1977 | MR

[12] Klein F., Lektsii ob ikosaedre i reshenii uravnenii pyatoi stepeni, Nauka, M., 1989 | MR

[13] Mamford D., Lektsii o teta-funktsiyakh, ed. Yu. I. Manin, Mir, M., 1988 ; Умемура Х. | MR

[14] Bugaev' N. V., Lakhtin' L. K., “Ob' uravneniyakh' pyatoi stepeni, razrѣshaemykh' v' radikalakh'”, Matematicheskii Sbornik', 15:1 (1890), 83–98 | Zbl

[15] Lakhtin' L. K., Algebraicheskiya uravneniya, razrѣshimyya v' gipergeometricheskikh' funktsiyakh', Imperatorskii Moskovskii Universitet, 1893

[16] Lakhtin' L. K., Differentsialnyya rezolventy algebraicheskikh' uravnenii vysshikh' rodov, Imperatorskii Moskovskii Universitet, 1897

[17] Lakhtin' L. K., “Differentsialnaya rezolventa n'kotorago vida uravnenii 6-oi stepeni s' gruppoyu 360-go poryadka”, Matematicheskii Sbornik', 20:3 (1898), 353–410

[18] Lakhtin' L. K., “Rѣshenie algebraicheskago uravneniya shestoi stepeni obschago vida pomoschyu differentsialnykh' rezolvent' tretyago poryadka”, Matematicheskii Sbornik', 22:1 (1901), 1–38 | Zbl

[19] Lakhtin' L. K., “Differentsialnaya rezolventa algebraicheskago uravneniya 6-oi stepeni obschago vida”, Matematicheskii Sbornik', 22 (1902), 1–68

[20] Lakhtin' L. K., “Vyrazheniya differentsialnykh' invariantov' dlya gruppy Valentinera $G_{360}$”, Matematicheskii Sbornik', 24:1 (1903), 94–115 | Zbl

[21] Prasolov V. V., Solovëv Yu. P., Ellipticheskie funktsii i algebraicheskie uravneniya, Faktorial, M., 1997