Equilibrium and Pareto-optimality in noisy non-zero sum discrete duel
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1111-1128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a non-zero sum game which is a generalization of the antagonistic noisy one-versus-one duel. Equilibrium and $\varepsilon$-equilibrium points are presented in explicit form. It is shown that the $\varepsilon$-equilibrium strategies of both players coincide with their $\varepsilon$-maxmin strategies. We give the conditions under which the equilibrium strategy is a maxmin strategy. Pareto optimal games are investigated.
@article{FPM_2002_8_4_a12,
     author = {L. N. Positselskaya},
     title = {Equilibrium and {Pareto-optimality} in noisy non-zero sum discrete duel},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1111--1128},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a12/}
}
TY  - JOUR
AU  - L. N. Positselskaya
TI  - Equilibrium and Pareto-optimality in noisy non-zero sum discrete duel
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1111
EP  - 1128
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a12/
LA  - ru
ID  - FPM_2002_8_4_a12
ER  - 
%0 Journal Article
%A L. N. Positselskaya
%T Equilibrium and Pareto-optimality in noisy non-zero sum discrete duel
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1111-1128
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a12/
%G ru
%F FPM_2002_8_4_a12
L. N. Positselskaya. Equilibrium and Pareto-optimality in noisy non-zero sum discrete duel. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1111-1128. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a12/

[1] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964 | Zbl

[2] Fox M., Kimeldorf G. S., “Noisy duels”, SIAM J. Appl. Math., 17 (1969), 353–361 | DOI | MR | Zbl

[3] Fox M., “Duels with possibly assymetric goals”, Zastisovanie Matematiky, XVII:1 (1980), 15–25 | MR | Zbl

[4] Kimeldorf G., “Duels: an overview”, Mathematics of conflict, North-Holland, 1983, 55–71 | MR | Zbl

[5] Davydov E. G., Positselskaya L. N., Shumnye dueli, VTs AN SSSR, M., 1982

[6] Positselskaya L. N., “Ob odnoi zadache raspredeleniya resursov”, Dinamika neodnorodnykh sistem, VNIISI, M., 1983, 260–266

[7] Radzik T., “General noisy duels”, Math. Japonica, 36:5 (1991), 827–857 | MR | Zbl

[8] Positselskaya L. N., “Duel kak model konkurentsii i katastrofy”, Matematika. Modelirovanie. Ekologiya., Trudy IV Mezhdunarodnoi konferentsii zhenschin-matematikov. Tom 4, vyp. 1, Nizhnii Novgorod, 1997, 111–119

[9] Positselskaya L. N., “Shumnaya duel smeshannogo tipa s nenulevoi summoi”, Trudy VI Mezhdunarodnoi konferentsii zhenschin-matematikov, Tom 6, vyp. 1, Nizhnii Novgorod, 1999, 77–85