Relative completeness for functional systems of polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 967-977.

Voir la notice de l'article provenant de la source Math-Net.Ru

For functional systems of polynomials with natural, integer and rational coefficients we solve the problem of completeness of sets, containing all monomials, and sets, containing all polynomials of one variable.
@article{FPM_2002_8_4_a1,
     author = {V. Sh. Darsalia},
     title = {Relative completeness for functional systems of polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {967--977},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a1/}
}
TY  - JOUR
AU  - V. Sh. Darsalia
TI  - Relative completeness for functional systems of polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 967
EP  - 977
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a1/
LA  - ru
ID  - FPM_2002_8_4_a1
ER  - 
%0 Journal Article
%A V. Sh. Darsalia
%T Relative completeness for functional systems of polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 967-977
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a1/
%G ru
%F FPM_2002_8_4_a1
V. Sh. Darsalia. Relative completeness for functional systems of polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 967-977. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a1/

[1] Darsaliya V. Sh., “Usloviya polnoty dlya polinomov s naturalnymi, tselymi i ratsionalnymi koeffitsientami”, Fundam. i prikl. mat., 2:2 (1996), 365–374 | MR | Zbl

[2] Matiyasevich Yu. V., Desyataya problema Gilberta, Fizmatlit, M., 1993 | MR