Relative completeness for functional systems of polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 967-977 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For functional systems of polynomials with natural, integer and rational coefficients we solve the problem of completeness of sets, containing all monomials, and sets, containing all polynomials of one variable.
@article{FPM_2002_8_4_a1,
     author = {V. Sh. Darsalia},
     title = {Relative completeness for functional systems of polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {967--977},
     year = {2002},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a1/}
}
TY  - JOUR
AU  - V. Sh. Darsalia
TI  - Relative completeness for functional systems of polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 967
EP  - 977
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a1/
LA  - ru
ID  - FPM_2002_8_4_a1
ER  - 
%0 Journal Article
%A V. Sh. Darsalia
%T Relative completeness for functional systems of polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 967-977
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a1/
%G ru
%F FPM_2002_8_4_a1
V. Sh. Darsalia. Relative completeness for functional systems of polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 967-977. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a1/

[1] Darsaliya V. Sh., “Usloviya polnoty dlya polinomov s naturalnymi, tselymi i ratsionalnymi koeffitsientami”, Fundam. i prikl. mat., 2:2 (1996), 365–374 | MR | Zbl

[2] Matiyasevich Yu. V., Desyataya problema Gilberta, Fizmatlit, M., 1993 | MR