@article{FPM_2002_8_3_a9,
author = {S. N. Mikhalev},
title = {Isometric implementations of {Bricard's} octahedra of type 1~and~2 with given volume},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {755--768},
year = {2002},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a9/}
}
S. N. Mikhalev. Isometric implementations of Bricard's octahedra of type 1 and 2 with given volume. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 755-768. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a9/
[1] Sabitov I. Kh., “Obobschennaya formula Gerona–Tartalya i nekotorye ee sledstviya”, Mat. sbornik, 189:10 (1998), 105–134 | MR | Zbl
[2] Sabitov I. Kh., “Algoritmicheskoe reshenie problemy izometricheskikh realizatsii dvumernykh mnogogrannykh metrik”, Izvestiya RAN. Ser. matem., 66:2 (2002), 159–172 | MR | Zbl
[3] Astrelin A. V., Sabitov I. Kh., “Kanonicheskii mnogochlen dlya ob'ema mnogogrannika”, Uspekhi mat. nauk, 54:2 (1999), 165–166 | MR | Zbl
[4] Sabitov I. Kh., “Lokalnaya teoriya izgibanii poverkhnostei”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 48, VINITI, M., 1989, 196–270 | MR
[5] Astrelin A. V., Sabitov I. Kh., “Minimalnyi po stepeni mnogochlen dlya opredeleniya ob'ema oktaedra po ego metrike”, Uspekhi mat. nauk, 50:5 (1995), 245–246 | MR | Zbl
[6] Galiulin R. V., Mikhalev S. N., Sabitov I. Kh., “Nekotorye prilozheniya formuly dlya ob'ema oktaedra”, Mat. zametki (to appear)
[7] Blumental L. M., Theory and Applications of Distance Geometry. 2nd ed., Chelsea, New York, 1970
[8] Berzhe M., Geometriya, T. 1, Mir, M., 1984
[9] Burago Yu. D., Zalgaller V. A., “Izometricheskie kusochno-lineinye pogruzheniya dvumernykh mnogoobrazii s poliedralnoi metrikoi v $\mathrm{rrr}^3$”, Algebra i analiz, 7:3 (1995), 76–95 | MR | Zbl