Isometric implementations of Bricard's octahedra of type 1~and~2 with given volume
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 755-768.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this article is to prove that in most cases any positive root of the polynomials for volume of Bricard's octahedra of type 1 and 2 can be implemented as volume of some octahedra in $\mathbb R^3$, but there are some cases when it is not so.
@article{FPM_2002_8_3_a9,
     author = {S. N. Mikhalev},
     title = {Isometric implementations of {Bricard's} octahedra of type 1~and~2 with given volume},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {755--768},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a9/}
}
TY  - JOUR
AU  - S. N. Mikhalev
TI  - Isometric implementations of Bricard's octahedra of type 1~and~2 with given volume
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 755
EP  - 768
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a9/
LA  - ru
ID  - FPM_2002_8_3_a9
ER  - 
%0 Journal Article
%A S. N. Mikhalev
%T Isometric implementations of Bricard's octahedra of type 1~and~2 with given volume
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 755-768
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a9/
%G ru
%F FPM_2002_8_3_a9
S. N. Mikhalev. Isometric implementations of Bricard's octahedra of type 1~and~2 with given volume. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 755-768. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a9/

[1] Sabitov I. Kh., “Obobschennaya formula Gerona–Tartalya i nekotorye ee sledstviya”, Mat. sbornik, 189:10 (1998), 105–134 | MR | Zbl

[2] Sabitov I. Kh., “Algoritmicheskoe reshenie problemy izometricheskikh realizatsii dvumernykh mnogogrannykh metrik”, Izvestiya RAN. Ser. matem., 66:2 (2002), 159–172 | MR | Zbl

[3] Astrelin A. V., Sabitov I. Kh., “Kanonicheskii mnogochlen dlya ob'ema mnogogrannika”, Uspekhi mat. nauk, 54:2 (1999), 165–166 | MR | Zbl

[4] Sabitov I. Kh., “Lokalnaya teoriya izgibanii poverkhnostei”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 48, VINITI, M., 1989, 196–270 | MR

[5] Astrelin A. V., Sabitov I. Kh., “Minimalnyi po stepeni mnogochlen dlya opredeleniya ob'ema oktaedra po ego metrike”, Uspekhi mat. nauk, 50:5 (1995), 245–246 | MR | Zbl

[6] Galiulin R. V., Mikhalev S. N., Sabitov I. Kh., “Nekotorye prilozheniya formuly dlya ob'ema oktaedra”, Mat. zametki (to appear)

[7] Blumental L. M., Theory and Applications of Distance Geometry. 2nd ed., Chelsea, New York, 1970

[8] Berzhe M., Geometriya, T. 1, Mir, M., 1984

[9] Burago Yu. D., Zalgaller V. A., “Izometricheskie kusochno-lineinye pogruzheniya dvumernykh mnogoobrazii s poliedralnoi metrikoi v $\mathrm{rrr}^3$”, Algebra i analiz, 7:3 (1995), 76–95 | MR | Zbl