Integrable cubic ODEs on free associative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 705-720
Cet article a éte moissonné depuis la source Math-Net.Ru
ODEs with respect to two unknown functions belonging to the free associative algebra are considered. A complete classification of such equations possessing linear first integrals and at least one cubic infinitesimal symmetry is performed. Equations of arbitrary degree such that a trace of any polynomial is a first integral are investigated.
@article{FPM_2002_8_3_a5,
author = {O. V. Efimovskaya},
title = {Integrable cubic {ODEs} on free associative algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {705--720},
year = {2002},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a5/}
}
O. V. Efimovskaya. Integrable cubic ODEs on free associative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 705-720. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a5/
[1] Olver P. J., Sokolov V. V., “Integrable evolution equations on associative algebras”, Commun. Math. Phys., 193:2 (1998), 245–268 | DOI | MR | Zbl
[2] Mikhailov A. V., Shabat A. B., Sokolov V. V., “Symmetry approach to classification of integrable equations”, What is Integrability?, Springer-Verlag, New York, 1991, 115–184 | MR | Zbl
[3] Mikhailov A. V., Sokolov V. V., “Integrable ODEs on associative algebras”, Commun. Math. Phys., 211:1 (2000), 231–251 | DOI | MR | Zbl
[4] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl