On Hermitian manifolds, satisfying the $U$-cosymplectic hypersurfaces axiom
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 943-947

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a Hermitian manifold satisfies the $U$-cosymplectic hypersurfaces axiom, then it is a $W_4$-manifold.
@article{FPM_2002_8_3_a17,
     author = {M. B. Banaru},
     title = {On {Hermitian} manifolds, satisfying the $U$-cosymplectic hypersurfaces axiom},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {943--947},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a17/}
}
TY  - JOUR
AU  - M. B. Banaru
TI  - On Hermitian manifolds, satisfying the $U$-cosymplectic hypersurfaces axiom
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 943
EP  - 947
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a17/
LA  - ru
ID  - FPM_2002_8_3_a17
ER  - 
%0 Journal Article
%A M. B. Banaru
%T On Hermitian manifolds, satisfying the $U$-cosymplectic hypersurfaces axiom
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 943-947
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a17/
%G ru
%F FPM_2002_8_3_a17
M. B. Banaru. On Hermitian manifolds, satisfying the $U$-cosymplectic hypersurfaces axiom. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 943-947. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a17/