Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2002_8_3_a17, author = {M. B. Banaru}, title = {On {Hermitian} manifolds, satisfying the $U$-cosymplectic hypersurfaces axiom}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {943--947}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a17/} }
M. B. Banaru. On Hermitian manifolds, satisfying the $U$-cosymplectic hypersurfaces axiom. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 943-947. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a17/
[1] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pura Appl., 123:4 (1980), 35–58 | MR | Zbl
[2] Banaru M., “On six-dimensional Hermitian submanifolds of Cayley algebra satisfying the $g$-cosymplectic hypersurfaces axiom”, Annuaire de l'universite de Sofia “St. Kl. Ohridski”, 94 (2000), 91–96 | MR
[3] Arseneva O. E., Kirichenko V. F., “Avtodualnaya geometriya obobschennykh ermitovykh poverkhnostei”, Mat. sbornik, 189:1 (1998), 21–44 | MR
[4] Banaru M., “Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebra”, J. Harbin Inst. Techn., 8:1 (2001), 38–40 | MR
[5] Banaru M., “A new characterization of the Cray–Hervella classes of almost Hermitian manifolds”, 8th International Conference on Differential Geometry and Its Applications, Abstracts (August 27–31), Opava. Czech Republic, 2001, P. 4