Nonlinear vibrations of a~nonhomogeneous string
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 877-886.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a semilinear equation for the forced vibrations of a finite string with $x$-dependent coefficients under Dirichlet boundary conditions. The existence of the time-periodic solution in nonresonant case is proved. It isn't require the Lipschitz condition. The proof uses the method of monotonic operators and principe Leray–Schauder of the fixed point.
@article{FPM_2002_8_3_a13,
     author = {I. A. Rudakov},
     title = {Nonlinear vibrations of a~nonhomogeneous string},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {877--886},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a13/}
}
TY  - JOUR
AU  - I. A. Rudakov
TI  - Nonlinear vibrations of a~nonhomogeneous string
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 877
EP  - 886
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a13/
LA  - ru
ID  - FPM_2002_8_3_a13
ER  - 
%0 Journal Article
%A I. A. Rudakov
%T Nonlinear vibrations of a~nonhomogeneous string
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 877-886
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a13/
%G ru
%F FPM_2002_8_3_a13
I. A. Rudakov. Nonlinear vibrations of a~nonhomogeneous string. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 877-886. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a13/

[1] Barby V., Pavel N. H., “Periodic solutions to nonlinear one dimensional wave equation with $x$-dependent coefficients”, Trans. Amer. Math. Soc., 349:5 (1997), 2035–2048 | DOI | MR

[2] Rabinowitz P., “Free vibration for a semilinear wave equation”, Comm. Pure Appl. Math., 31:1 (1978), 31–68 | DOI | MR | Zbl

[3] Brezis H., Nirenberg L., “Forced vibrations for a nonlinear wave equations”, Comm. Pure Appl. Math., 31:1 (1978), 1–30 | DOI | MR | Zbl

[4] Bahri A., Brezis H., “Periodic solution of a nonlinear wave equation”, Proc. Roy. Soc. Edinburg, 85A (1980), 313–320 | MR | Zbl

[5] Feireisl E., “On the existence of multiplicity periodic solutions of a semilinear wave equation with a superlinear forcing term”, Czechosl. Math. J., 38:1 (1988), 78–87 | MR | Zbl

[6] Plotnikov P. I., “Suschestvovanie schetnogo mnozhestva periodicheskikh reshenii zadachi o vynuzhdennykh kolebaniyakh dlya slabo nelineinogo volnovogo uravneniya”, Mat. sb., 136 (178):4(8) (1988), 546–560 | MR

[7] Rudakov I. A., “Nelineinye kolebaniya struny”, Vestnik Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1984, no. 2, 9–13 | MR | Zbl