Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2002_8_2_a2, author = {M. B. Banaru}, title = {On the type number of nearly-cosymplectic hypersurfaces in {nearly-K\"ahlerian} manifolds}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {357--364}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a2/} }
TY - JOUR AU - M. B. Banaru TI - On the type number of nearly-cosymplectic hypersurfaces in nearly-K\"ahlerian manifolds JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 357 EP - 364 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a2/ LA - ru ID - FPM_2002_8_2_a2 ER -
M. B. Banaru. On the type number of nearly-cosymplectic hypersurfaces in nearly-K\"ahlerian manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 357-364. http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a2/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR
[2] Khart N., Geometricheskoe kvantovanie v deistvii, Mir, M., 1985 | MR
[3] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pura Appl., 123:4 (1980), 35–58 | MR | Zbl
[4] Kirichenko V. F., “Pochti kelerovy struktury, indutsirovannye 3-vektornymi proizvedeniyami na 6-mernykh podmnogoobraziyakh algebry Keli”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1973, no. 3, 70–75 | Zbl
[5] Gray A., “The structure of nearly Kähler manifolds”, Ann. Math., 223 (1976), 233–248 | DOI | MR | Zbl
[6] Ejiri N., “Totally real submanifolds in a 6-sphere”, Proc. Amer. Math. Soc., 83 (1981), 759–763 | DOI | MR | Zbl
[7] Sekigawa K., “Almost complex submanifolds of a 6-dimensional sphere”, Kodai Math. J., 6 (1983), 174–185 | DOI | MR | Zbl
[8] Banaru M., “On six-dimensional Hermitian submanifolds of Cayley algebra satisfying the $g$-cosymplectic hypersurfaces axiom”, Annuaire de l'universite de Sofia “St. Kl. OHRIDSKI”, 94 (2000), 91–96 | MR
[9] Banaru M., “Six theorems on six-dimensional Hermitian submanifolds of Cayley algebra”, Izvestiya Akademii nauk Respubliki Moldova. Matem., 2000, no. 3, 3–10 | MR | Zbl
[10] Banaru M., “Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebra”, Journal Harbin Inst. Techn., 8:1 (2001), 38–40 | MR
[11] Sato T., “An example of an almost Kähler manifold with pointwise constant holomorphic sectional curvature”, Tokyo J. Math., 23:2 (2000), 387–401 | DOI | MR | Zbl
[12] Arseneva O. E., Kirichenko V. F., “Avtodualnaya geometriya obobschennykh ermitovykh poverkhnostei”, Mat. sbornik, 189:1 (1998), 21–44 | MR
[13] Kirichenko V. F., Stepanova L. V., “O geometrii giperpoverkhnostei kvazikelerovykh mnogoobrazii”, Uspekhi mat. nauk, 1995, no. 2, 213–214 | MR | Zbl
[14] Stepanova L. V., “Kvazisasakieva struktura na giperpoverkhnostyakh ermitovykh mnogoobrazii”, Nauchnye trudy MPGU im. V. I. Lenina, 1995, 187–191
[15] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhniki. Problemy geometrii, 18, VINITI, M., 1986, 25–71 | MR
[16] Kurihara H., “The type number on real hypersurfaces in a quaternionic space form”, Tsukuba J. Math., 24:1 (2000), 127–132 | MR | Zbl
[17] Stepanova L. V., Kontaktnaya geometriya giperpoverkhnostei kvazikelerovykh mnogoobrazii, Diss. $\dots$ kand. f.-m. nauk, MPGU im. V. I. Lenina, M., 1995
[18] Banaru M. B., “Tenzory Kirichenko”, Issledovaniya po kraevym zadacham kompleksnogo analiza i differentsialnym uravneniyam, Vyp. 2, Smolensk, 2000, 42–48
[19] Banaru M., “A new characterization of the Cray–Hervella classes of almost Hermitian manifolds”, 8th International Conference on Differential Geometry and Its Applications (August 27–31. 2001.), Opava. Czech Rèpublic, 4 | MR
[20] Norden A. P., Teoriya poverkhnostei, GITTL, M., 1956