Conjugation in the incidence algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 627-630.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of the canonical form of an incidence function that generalizes the Jordan cell, and we find the canonical forms for some functions. In particular, the canonical form of the zeta-function in some incidence algebras is found.
@article{FPM_2002_8_2_a16,
     author = {V. E. Marenich},
     title = {Conjugation in the incidence algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {627--630},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a16/}
}
TY  - JOUR
AU  - V. E. Marenich
TI  - Conjugation in the incidence algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 627
EP  - 630
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a16/
LA  - ru
ID  - FPM_2002_8_2_a16
ER  - 
%0 Journal Article
%A V. E. Marenich
%T Conjugation in the incidence algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 627-630
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a16/
%G ru
%F FPM_2002_8_2_a16
V. E. Marenich. Conjugation in the incidence algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 627-630. http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a16/

[1] Stenli R., Perechislitelnaya kombinatorika, Mir, M., 1990 | MR

[2] Marenich E. E., “Singulyarnost nekotorykh otnoshenii i ikh kombinatornye prilozheniya”, Diskretnaya mat., 8 (1996), 63–88 | MR | Zbl

[3] Stanley R. P., “Some aspects of group acting in finite posets”, J. Combin. Theory A, 32 (1982), 132–161 | DOI | MR | Zbl