Relativistic charge in plane wave
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 547-557.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the system of Maxwell–Lorentz equations in $z$-presentation has many solutions. Determination of the energetic condition of the charge is reduced to analysis of the parametric system as a Kepler problem. The extreme conditions and configuration of the electromagnetic wave field determine the value of the reflection parameter, which changes the efficiency of electron-wave interaction and dynamics of the charge's motion. A visual geometric interpretation of possible energetic state of the electron is given. We present expressions that determine the change of the charge's energy and coordinates as functions of the length of interaction space and laboratory time. Four possible regimes of the electron energy change are found. We obtain a functional connection of the initial impulses with the electromagnetic wave amplitude. The exact theoretical solution of electron motion relativistic equations is constructed in the form of a uniformly converging Fourier series.
@article{FPM_2002_8_2_a10,
     author = {V. V. Ternovskii and A. M. Khapaev},
     title = {Relativistic charge in plane wave},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {547--557},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a10/}
}
TY  - JOUR
AU  - V. V. Ternovskii
AU  - A. M. Khapaev
TI  - Relativistic charge in plane wave
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 547
EP  - 557
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a10/
LA  - ru
ID  - FPM_2002_8_2_a10
ER  - 
%0 Journal Article
%A V. V. Ternovskii
%A A. M. Khapaev
%T Relativistic charge in plane wave
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 547-557
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a10/
%G ru
%F FPM_2002_8_2_a10
V. V. Ternovskii; A. M. Khapaev. Relativistic charge in plane wave. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 547-557. http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a10/

[1] Landau L. D., Livshits E. M., Teoriya polya, Nauka, M., 1988 | MR

[2] Ternov I. M., Khapaev A. M., Volodin B. A., “Dinamika relyativistskikh zaryazhennykh chastits v pole ploskoi elektromagnitnoi volny i v pole Redmonda”, Vestnik Mosk. un-ta. Fizika, 21:4 (1980), 70–74 | MR

[3] Volodin B. A., Ponomarev I. V., Khapaev A. M., “K voprosu o dvizhenii elektrona v pole Redmonda”, Izv. vyssh. uchebn. zaved. Fizika, 1984, no. 3, 113–115

[4] Volodin B. A., Khapaev A. M., “Ob odnom metode resheniya zadachi elektron-volnovogo vzaimodeistviya”, Izv. vyssh. uchebn. zaved. Fizika, 1989, no. 9, 76–81

[5] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968 | MR

[6] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1958 | MR