The~boundary-value problem for the~equations of radiation transfer of polarized light
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 97-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of the solution of half-space boundary-value problems for Chandrasekhar's equations describing the scattering of polarized light in the case of a combination of Rayleigh and isotropic scattering with arbitrary photon survival probability in an elementary scattering is constructed. A theorem on the expansion of the solution in terms of eigenvectors of discrete and continuous spectra is proved. The proof reduces to solving the Riemann–Hilbert vector boundary-value problem with a matrix coefficient. The matrix that reduces the coefficient to diagonal form has eight branch points in the complex plain. The definition of an analytical branch of a diagonalizing matrix gives us the opportunity to reduce the Riemann–Hilbert vector boundary-value problem to two scalar boundary-value problems on the major cut $[0,1]$ and two vector boundary value problems on the supplementary cut. The solution of the Riemann–Hilbert boundary-value problem is given in the class of meromorphic vectors. The solvability conditions enable unique determination of the unknown coefficients of the expansion and the free parameters of the solution.
@article{FPM_2002_8_1_a8,
     author = {A. V. Latyshev and A. V. Moiseev},
     title = {The~boundary-value problem for the~equations of radiation transfer of polarized light},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {97--115},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a8/}
}
TY  - JOUR
AU  - A. V. Latyshev
AU  - A. V. Moiseev
TI  - The~boundary-value problem for the~equations of radiation transfer of polarized light
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 97
EP  - 115
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a8/
LA  - ru
ID  - FPM_2002_8_1_a8
ER  - 
%0 Journal Article
%A A. V. Latyshev
%A A. V. Moiseev
%T The~boundary-value problem for the~equations of radiation transfer of polarized light
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 97-115
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a8/
%G ru
%F FPM_2002_8_1_a8
A. V. Latyshev; A. V. Moiseev. The~boundary-value problem for the~equations of radiation transfer of polarized light. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 97-115. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a8/

[1] Chandrasekar S., Perenos luchistoi energii, Izd. inostrannoi literatury, M., 1953

[2] Latyshev A. V., “O reshenii granichnykh zadach dlya uravnenii perenosa izlucheniya”, ZhVM i MF, 34:2 (1994), 234–245 | MR | Zbl

[3] Latyshev A. V., “Vektornaya kraevaya zadacha Rimana–Gilberta v granichnykh zadachakh rasseyaniya polyarizovannogo sveta”, ZhVM i MF, 35:7 (1995), 1108–1127 | MR | Zbl

[4] Latyshev A. V., “Analiticheskoe reshenie vektornykh modelnykh kineticheskikh uravnenii s postoyannym yadrom i ikh prilozheniya”, Teor. i matem. fiz., 97:2 (1993), 283–303 | MR | Zbl

[5] Burniston E. E., Siewert C. E., “Half-range expansion theorems in studies of polarized light”, J. Math. Phys., 11:12 (1970), 3416–3420 | DOI | MR

[6] Bond G. R., Siewert C. E., “On the nonconservative eqation of transfer for a combination of Rayleigh and isotropic scattering”, The Astrophysical Journal, 164:1 (1971), 96–110 | MR

[7] Siewert C. E., Burniston E. E., “An explicit closed-form result for the discrete eigenvalue in studies of polarized light”, The Astrophysical Journal, 173:2 (1972), 405–406 | DOI

[8] Siewert C. E., Burniston E. E., “On existence and uniqueness theorems concerning the $H$-matrix of radiative transfer”, The Astrophysical Journal, 174:3 (1972), 629–641 | DOI | MR

[9] Siewert C. E., Maiorino J. R., “The complete solution for the scattering of polarized light in a Rayleigh and isotopically scattering atmosphere”, Astrophysics and Space Science, 72 (1980), 189–201 | DOI | MR

[10] Siewert C. E., “On the half-range orthogonality appropriate to the scattering of polarized light”, J.Q.S.R.T, 12:4 (1972), 683–694 | MR

[11] Germogenova T. A., Konovalov N. V., Kuzmina M. G., “Osnovy matematicheskoi teorii perenosa polyarizovannogo izlucheniya (strogie rezultaty)”, Trudy simpoziuma “Printsip invariantnosti i ego prilozheniya” (Byurokan, 26–30 oktyabrya 1981), Izd-vo AN ArmSSR, Erevan, 1989

[12] Keiz K., Tsvaifel P., Lineinaya teoriya perenosa, Mir, M., 1972

[13] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR