New algebraic structure of Steiner triple systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 313-318
Steiner triple system (STS) is a balanced incomplete block design (BIBD). The well-known algebraic structures of STS are Steiner quasigroup and Steiner loop. A new algebraic structure of STS called Steiner $P$-algebra has been developed and some of its properties have been described here.
@article{FPM_2002_8_1_a24,
author = {S. Chakrabarti},
title = {New algebraic structure of {Steiner} triple systems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {313--318},
year = {2002},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a24/}
}
S. Chakrabarti. New algebraic structure of Steiner triple systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 313-318. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a24/
[1] Artamonov V. A., “Universalnye algebry”, Obschaya algebra, T. 2. Gl. VI, ed. L. A. Skornyakova, Nauka, M., 1991, 295–367
[2] Burris S., Sankappanavar H. P., A course in universal algebra, Springer-Verlag, 1978 | MR
[3] Wallis W. D., Combinatorial designs. Pure and Appllied Mathematics, V. 118, Marcel Dekker Inc., 1988 | MR | Zbl