New algebraic structure of Steiner triple systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 313-318.

Voir la notice de l'article provenant de la source Math-Net.Ru

Steiner triple system (STS) is a balanced incomplete block design (BIBD). The well-known algebraic structures of STS are Steiner quasigroup and Steiner loop. A new algebraic structure of STS called Steiner $P$-algebra has been developed and some of its properties have been described here.
@article{FPM_2002_8_1_a24,
     author = {S. Chakrabarti},
     title = {New algebraic structure of {Steiner} triple systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {313--318},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a24/}
}
TY  - JOUR
AU  - S. Chakrabarti
TI  - New algebraic structure of Steiner triple systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 313
EP  - 318
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a24/
LA  - ru
ID  - FPM_2002_8_1_a24
ER  - 
%0 Journal Article
%A S. Chakrabarti
%T New algebraic structure of Steiner triple systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 313-318
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a24/
%G ru
%F FPM_2002_8_1_a24
S. Chakrabarti. New algebraic structure of Steiner triple systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 313-318. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a24/

[1] Artamonov V. A., “Universalnye algebry”, Obschaya algebra, T. 2. Gl. VI, ed. L. A. Skornyakova, Nauka, M., 1991, 295–367

[2] Burris S., Sankappanavar H. P., A course in universal algebra, Springer-Verlag, 1978 | MR

[3] Wallis W. D., Combinatorial designs. Pure and Appllied Mathematics, V. 118, Marcel Dekker Inc., 1988 | MR | Zbl