On the computing of the eigen\-values of the Orr--Sommerfeld problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 301-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the Orr–Sommerfeld problem \begin{align*} {} \{(iR)^{-1}M^2-\alpha[q(x)M-q''(x)]\}y=-\lambda My,\\ (\pm 1)=y'(\pm1)=0, \end{align*} where $M=d^2/dx^2-\alpha^2$, $q(x)$ is the velocity profile, $R$ and $\alpha$ are Reynolds and wave numbers, respectively. We approve the Galerkin method to compute the eigenvalues of this problem provided that the basis for the method consists of the eigenfunctions of the operator $M^2$.
@article{FPM_2002_8_1_a22,
     author = {M. I. Neiman-Zade and A. A. Shkalikov},
     title = {On the computing of the eigen\-values of the {Orr--Sommerfeld} problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {301--305},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a22/}
}
TY  - JOUR
AU  - M. I. Neiman-Zade
AU  - A. A. Shkalikov
TI  - On the computing of the eigen\-values of the Orr--Sommerfeld problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 301
EP  - 305
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a22/
LA  - ru
ID  - FPM_2002_8_1_a22
ER  - 
%0 Journal Article
%A M. I. Neiman-Zade
%A A. A. Shkalikov
%T On the computing of the eigen\-values of the Orr--Sommerfeld problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 301-305
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a22/
%G ru
%F FPM_2002_8_1_a22
M. I. Neiman-Zade; A. A. Shkalikov. On the computing of the eigen\-values of the Orr--Sommerfeld problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 301-305. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a22/

[1] Draizin R. G. and Reid W. H., Hydrodynamic Stability, Cambridge, 1981

[2] Hanningson D. S., Reddy S. C. and Schmidt P. J., “Pseudospectra of the Orr–Sommerfeld operator”, SIAM J. Appl. Math., 53:1 (1993), 15–47 | DOI | MR

[3] Trefethen A. E., Trefethen L. N. and Schmid P. J., “Spectra and pseudospectra for pipe Poiseuille flow”, Comp. Meth. Appl. Mech. Engr., 1999, 413–420 | DOI | MR | Zbl

[4] Gokhberg I. Z., Krein M. G., Vvedenie v teoriyu lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[5] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko B. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR