On the computing of the eigen\-values of the Orr--Sommerfeld problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 301-305
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the Orr–Sommerfeld problem
\begin{align*}
{} \{(iR)^{-1}M^2-\alpha[q(x)M-q''(x)]\}y=-\lambda My,\\
(\pm 1)=y'(\pm1)=0,
\end{align*}
where $M=d^2/dx^2-\alpha^2$, $q(x)$ is the velocity profile,
$R$ and $\alpha$ are Reynolds and wave numbers, respectively.
We approve the Galerkin method to compute the eigenvalues
of this problem provided that the basis for the method consists of the
eigenfunctions of the operator $M^2$.
@article{FPM_2002_8_1_a22,
author = {M. I. Neiman-Zade and A. A. Shkalikov},
title = {On the computing of the eigen\-values of the {Orr--Sommerfeld} problem},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {301--305},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a22/}
}
TY - JOUR AU - M. I. Neiman-Zade AU - A. A. Shkalikov TI - On the computing of the eigen\-values of the Orr--Sommerfeld problem JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 301 EP - 305 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a22/ LA - ru ID - FPM_2002_8_1_a22 ER -
M. I. Neiman-Zade; A. A. Shkalikov. On the computing of the eigen\-values of the Orr--Sommerfeld problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 301-305. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a22/