The tracing of external and internal representation functions of continuous functions of several variables by superposition of continuous functions of one variable
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 27-38
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we present effective procedures of Kolmogorov's representation of continuous functions of several variables by superposition of continuous functions of one variable. On the one hand, we show internal functions from Sprecher's process in explicit form, on the other hand, we construct external functions using only the information about modules of continuity of the initial function of several variables.
@article{FPM_2002_8_1_a2,
     author = {A. Yu. Golubkov},
     title = {The~tracing of external and internal representation functions of continuous functions of several variables by superposition of continuous functions of one variable},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {27--38},
     year = {2002},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a2/}
}
TY  - JOUR
AU  - A. Yu. Golubkov
TI  - The tracing of external and internal representation functions of continuous functions of several variables by superposition of continuous functions of one variable
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 27
EP  - 38
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a2/
LA  - ru
ID  - FPM_2002_8_1_a2
ER  - 
%0 Journal Article
%A A. Yu. Golubkov
%T The tracing of external and internal representation functions of continuous functions of several variables by superposition of continuous functions of one variable
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 27-38
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a2/
%G ru
%F FPM_2002_8_1_a2
A. Yu. Golubkov. The tracing of external and internal representation functions of continuous functions of several variables by superposition of continuous functions of one variable. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 27-38. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a2/

[1] Tikhomirov V. M., “Raboty A. N. Kolmogorova po $\varepsilon$-entropii funktsionalnykh klassov i superpozitsiyam funktsii”, Uspekhi mat. nauk, 18:5 (1963), 55–92 | MR | Zbl

[2] Sprecher D. A., “On the structure of continuous functions of several variables”, Trans. Amer. Math. Soc., 115 (1965), 340–355 | DOI | MR | Zbl

[3] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, DAN SSSR, 114:5 (1957), 953–956 | MR

[4] Arnold V. I., “O predstavlenii funktsii neskolkikh peremennykh v vide superpozitsii funktsii menshego chisla peremennykh”, Mat. prosveschenie, 1958, no. 3, 41–61

[5] Galochkin A. I., Nesterenko Yu. V., Shidlovskii A. B., Vvedenie v teoriyu chisel, Izd-vo Moskovskogo universiteta, M., 1995 | MR | Zbl