On some cubic equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 263-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the structure of solutions of the system $$ \begin{cases} x_1+x_2+x_3=y_1+y_2+y_3 \\ x_1^3+x_2^3+x_3^3=y_1^3+y_2^3+y_3^3 \end{cases} $$ and the equation $$ x_1^3+x_2^3+x_3^3=y_1^3+y_2^3+y_3^3. $$
@article{FPM_2002_8_1_a18,
     author = {A. V. Ustinov},
     title = {On some cubic equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {263--271},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a18/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - On some cubic equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 263
EP  - 271
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a18/
LA  - ru
ID  - FPM_2002_8_1_a18
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T On some cubic equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 263-271
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a18/
%G ru
%F FPM_2002_8_1_a18
A. V. Ustinov. On some cubic equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 263-271. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a18/

[1] Chondhry A., “Symmetric Dioph. Systems”, Acta Arith., 59 (1991), 291–307 | MR

[2] Dickson L. E., Introduction to the Theory of Numbers, Univ. of Chicago press, Chicago, 1931; Dikson L. E., Vvedenie v teoriyu chisel, Tbilisi, 1941