Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2002_8_1_a14, author = {E. Yu. Piliguzova}, title = {On rate of approximation of critical excursion probability for random process by moments method}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {187--194}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a14/} }
TY - JOUR AU - E. Yu. Piliguzova TI - On rate of approximation of critical excursion probability for random process by moments method JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 187 EP - 194 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a14/ LA - ru ID - FPM_2002_8_1_a14 ER -
%0 Journal Article %A E. Yu. Piliguzova %T On rate of approximation of critical excursion probability for random process by moments method %J Fundamentalʹnaâ i prikladnaâ matematika %D 2002 %P 187-194 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a14/ %G ru %F FPM_2002_8_1_a14
E. Yu. Piliguzova. On rate of approximation of critical excursion probability for random process by moments method. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 187-194. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a14/
[1] Kramer G., Lidbetter M. R., Statsionarnye sluchainye protsessy, Mir, M., 1969
[2] Azais Jean-Marc, Wschebor Mario, A formula to compute the distribution of the maximum of a random process, Publication du Laboratoire de Statistique et Probabilites 07–95
[3] Piterbarg V. I., “Metod Raisa dlya gaussovskikh sluchainykh polei”, Fundam. i prikl. mat., 2:1 (1996), 187–204 | MR | Zbl
[4] Demidovich B. P., Maron I. A., Osnovy vychislitelnoi matematiki, ed. B. P. Demidovich, Izd-vo fiz.-mat. literatury, M., 1996 | MR