Impulse control of Liapunov exponents.~II
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 171-185
Voir la notice de l'article provenant de la source Math-Net.Ru
The systems $\dot x=A_0(t)+\sum\limits_{i=1}^{\infty}\delta(t-t_i)A_i(t)$, where $\delta(\cdot)$ is Dirac's delta-function, are investigated. It is proved that the basic results of Liapunov exponents theory remain valid for such systems. The theory of impulse control of Liapunov exponents is developed.
@article{FPM_2002_8_1_a13,
author = {D. M. Olenchikov},
title = {Impulse control of {Liapunov} {exponents.~II}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {171--185},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a13/}
}
D. M. Olenchikov. Impulse control of Liapunov exponents.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 171-185. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a13/