Impulse control of Liapunov exponents.~II
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 171-185

Voir la notice de l'article provenant de la source Math-Net.Ru

The systems $\dot x=A_0(t)+\sum\limits_{i=1}^{\infty}\delta(t-t_i)A_i(t)$, where $\delta(\cdot)$ is Dirac's delta-function, are investigated. It is proved that the basic results of Liapunov exponents theory remain valid for such systems. The theory of impulse control of Liapunov exponents is developed.
@article{FPM_2002_8_1_a13,
     author = {D. M. Olenchikov},
     title = {Impulse control of {Liapunov} {exponents.~II}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {171--185},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a13/}
}
TY  - JOUR
AU  - D. M. Olenchikov
TI  - Impulse control of Liapunov exponents.~II
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 171
EP  - 185
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a13/
LA  - ru
ID  - FPM_2002_8_1_a13
ER  - 
%0 Journal Article
%A D. M. Olenchikov
%T Impulse control of Liapunov exponents.~II
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 171-185
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a13/
%G ru
%F FPM_2002_8_1_a13
D. M. Olenchikov. Impulse control of Liapunov exponents.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 171-185. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a13/