Impulse control of Liapunov exponents.~I
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 151-169

Voir la notice de l'article provenant de la source Math-Net.Ru

Definition of solution of the system $\dot x=\delta(t)A(t)x$, where $\delta(t)$ is Dirac's delta-function, is introduced by means of non-standard analysis methods.
@article{FPM_2002_8_1_a12,
     author = {D. M. Olenchikov},
     title = {Impulse control of {Liapunov} {exponents.~I}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--169},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a12/}
}
TY  - JOUR
AU  - D. M. Olenchikov
TI  - Impulse control of Liapunov exponents.~I
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 151
EP  - 169
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a12/
LA  - ru
ID  - FPM_2002_8_1_a12
ER  - 
%0 Journal Article
%A D. M. Olenchikov
%T Impulse control of Liapunov exponents.~I
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 151-169
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a12/
%G ru
%F FPM_2002_8_1_a12
D. M. Olenchikov. Impulse control of Liapunov exponents.~I. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 151-169. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a12/