Impulse control of Liapunov exponents.~I
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 151-169
Voir la notice de l'article provenant de la source Math-Net.Ru
Definition of solution of the system $\dot x=\delta(t)A(t)x$, where $\delta(t)$ is Dirac's delta-function, is introduced by means of non-standard analysis methods.
@article{FPM_2002_8_1_a12,
author = {D. M. Olenchikov},
title = {Impulse control of {Liapunov} {exponents.~I}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {151--169},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a12/}
}
D. M. Olenchikov. Impulse control of Liapunov exponents.~I. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 151-169. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a12/