Cost bound for LLL--Grigoryev method for factoring in $GF(q)[x,y]$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 129-139
Voir la notice de l'article provenant de la source Math-Net.Ru
The well-known LLL method was accommodated in papers by D. Yu. Grigoryev and A. L. Chistov (1982) and A. K. Lenstra (1985) for factoring a polynomial $f$ in $F[x,y]$ over a finite field $F$. A. K. Lenstra derives a cost bound for his method with the main summand $O((\deg_x f)^6 (\deg_y f)^2)$ arithmetic operations in $F$. D. Yu. Grigoryev and A. L. Chistov aimed to provide a method of a degree cost bound and did not consider any detailed estimation. Here we show that this method allows, after certain correction, to prove a better bound with the main summand $O((\deg_x f)^4 (\deg_y f)^3)$.
@article{FPM_2002_8_1_a10,
author = {S. D. Mechveliani},
title = {Cost bound for {LLL--Grigoryev} method for factoring in $GF(q)[x,y]$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {129--139},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a10/}
}
S. D. Mechveliani. Cost bound for LLL--Grigoryev method for factoring in $GF(q)[x,y]$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 129-139. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a10/