About determinableness of an Abelian group by its holomorph in the class of all Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 17-25
For an Abelian group without elements of order 2 the following results were obtained: 1) a criterion for its determinableness by its holomorph in the class of all Abelian groups; 2) a criterion for its characteristicness in its holomorph.
@article{FPM_2002_8_1_a1,
author = {I. Kh. Bekker and V. N. Nedov},
title = {About determinableness of an {Abelian} group by its holomorph in the~class of all {Abelian} groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {17--25},
year = {2002},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a1/}
}
TY - JOUR AU - I. Kh. Bekker AU - V. N. Nedov TI - About determinableness of an Abelian group by its holomorph in the class of all Abelian groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 17 EP - 25 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a1/ LA - ru ID - FPM_2002_8_1_a1 ER -
I. Kh. Bekker; V. N. Nedov. About determinableness of an Abelian group by its holomorph in the class of all Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 17-25. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a1/
[1] Mills W. H., “Multiple holomorphs of finitely generated abelian groups”, Trans. Amer. Math. Soc., 74:3 (1953), 428–443 | DOI | MR | Zbl
[2] Bekker I. Kh., Kozhukhov S. F., Avtomorfizmy abelevykh grupp bez krucheniya, Izd-vo Tomskogo un-ta, Tomsk, 1988 | Zbl
[3] Peremans W., “Completeness of holomorphs”, Yndagations Math., 19 (1957), 608–619 | MR
[4] Bekker I. Kh., “O golomorfakh neredutsirovannykh abelevykh grupp”, Izv. vyssh. uchebn. zaved. Matem., 1968, no. 8, 3–10 | MR | Zbl
[5] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977