Generalized Chebyshev polynomials and Pell--Abel equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1123-1145
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the question of the compositional reducibility of generalized Chebyshev polynomials is solved by studying the combinatorial structure of plane trees. As a particular case we deduce the criterion of minimality of the solution of Pell–Abel equation corresponding to a given plane tree. Some other applications are also considered.
@article{FPM_2001_7_4_a9,
author = {A. V. Pastor},
title = {Generalized {Chebyshev} polynomials and {Pell--Abel} equation},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1123--1145},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a9/}
}
A. V. Pastor. Generalized Chebyshev polynomials and Pell--Abel equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1123-1145. http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a9/