Stochastic processes on groups of diffeomorphisms and loops of real, complex and non-Archimedean manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1091-1105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to stochastic processes on infinite dimensional topological groups that do not satisfy the Campbell–Hausdorff formula even locally. In the cases of real and complex manifolds the classical stochastic analysis is used, but in the non-Archimedean case the corresponding stochastic antiderivations and antiderivational equations are developed and investigated. For real-valued transition probabilities of random processes the corresponding regular strongly continuous unitary representations are constructed and their topological irreducibility is analysed.
@article{FPM_2001_7_4_a7,
     author = {S. V. Lyudkovskii},
     title = {Stochastic processes on groups of diffeomorphisms and loops of real, complex and {non-Archimedean} manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1091--1105},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a7/}
}
TY  - JOUR
AU  - S. V. Lyudkovskii
TI  - Stochastic processes on groups of diffeomorphisms and loops of real, complex and non-Archimedean manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 1091
EP  - 1105
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a7/
LA  - ru
ID  - FPM_2001_7_4_a7
ER  - 
%0 Journal Article
%A S. V. Lyudkovskii
%T Stochastic processes on groups of diffeomorphisms and loops of real, complex and non-Archimedean manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 1091-1105
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a7/
%G ru
%F FPM_2001_7_4_a7
S. V. Lyudkovskii. Stochastic processes on groups of diffeomorphisms and loops of real, complex and non-Archimedean manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1091-1105. http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a7/