Homological properties of algebra $C(X)$ in non-Archimedean analysis
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1037-1046
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article the author offers a variant of homological theory in non-Archimedean analysis and computes the left global dimension and bidimension of an algebra $C(X)$ of all continuous functions on an ultrametrizable compact set $X$. To the moment the analogous problem in Archimedean analysis is still not solved. More generally, the author computes the homological dimensions of ideals $I\subset C(X)$ as left modules and bimodules.
@article{FPM_2001_7_4_a4,
author = {A. V. Kuzmin},
title = {Homological properties of algebra $C(X)$ in {non-Archimedean} analysis},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1037--1046},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a4/}
}
A. V. Kuzmin. Homological properties of algebra $C(X)$ in non-Archimedean analysis. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1037-1046. http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a4/