Extension theorem for linear codes over finite quasi-Frobenius modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1227-1236.

Voir la notice de l'article provenant de la source Math-Net.Ru

F. J. MacWilliams proved an Extension theorem: Hamming isometries between linear codes over finite fields extend to monomial transformation. This result has been generalized by J. A. Wood who proved it for Frobenius rings. In this paper the Extension theorem for linear codes over a finite quasi-Frobenius module with commutative coefficient ring is proved. The main technique involves the description of quasi-Frobenius module in terms of character theory.
@article{FPM_2001_7_4_a14,
     author = {I. L. Kheifets},
     title = {Extension theorem for linear codes over finite {quasi-Frobenius} modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1227--1236},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a14/}
}
TY  - JOUR
AU  - I. L. Kheifets
TI  - Extension theorem for linear codes over finite quasi-Frobenius modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 1227
EP  - 1236
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a14/
LA  - ru
ID  - FPM_2001_7_4_a14
ER  - 
%0 Journal Article
%A I. L. Kheifets
%T Extension theorem for linear codes over finite quasi-Frobenius modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 1227-1236
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a14/
%G ru
%F FPM_2001_7_4_a14
I. L. Kheifets. Extension theorem for linear codes over finite quasi-Frobenius modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1227-1236. http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a14/