Description of metric space as a~classification of its finite subspaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1147-1175.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new method of metric space description, using its constituents (finite metric subspaces) as basic objects of description. The method allows one to obtain information about the metric space properties from the metric and to describe the metric space geometry in terms of its constituents and metric only. The suggested method permits one to remove the constraints imposed usually on metric (the triangle axiom and non-negativity of the squared metric). Elimination of these constraints leads to a new non-degenerate geometry. This geometry is called tubular geometry (T-geometry), because in this geometry the shortest paths are replaced by hollow tubes. The T-geometry may be used for description of the space-time and of other geometries with indefinite metric.
@article{FPM_2001_7_4_a10,
     author = {Yu. A. Rylov},
     title = {Description of metric space as a~classification of its finite subspaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1147--1175},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a10/}
}
TY  - JOUR
AU  - Yu. A. Rylov
TI  - Description of metric space as a~classification of its finite subspaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 1147
EP  - 1175
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a10/
LA  - ru
ID  - FPM_2001_7_4_a10
ER  - 
%0 Journal Article
%A Yu. A. Rylov
%T Description of metric space as a~classification of its finite subspaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 1147-1175
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a10/
%G ru
%F FPM_2001_7_4_a10
Yu. A. Rylov. Description of metric space as a~classification of its finite subspaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1147-1175. http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a10/