Compactly supported wavelets
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 955-981.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to one-dimensional compactly supported wavelets which are of the greatest interest for applications because of the simplest numerical realization of expansion and synthesis algorithms. It contains the review of papers (known to the author) about compactly supported wavelets and some new results of the author on the topic. The paper consists of 7 sections. In the second section the problem of existence of scaling function for wavelet bases is considered. Sections 3 and 4 are devoted to a brief account of the multiresolution analysis and the theory of compactly supported wavelets. Section 5 presents results about regularity of compactly supported wavelets in Sobolev and Holder spaces. The final two sections are devoted to localization of wavelets in time and in frequency.
@article{FPM_2001_7_4_a0,
     author = {I. Ya. Novikov},
     title = {Compactly supported wavelets},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {955--981},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a0/}
}
TY  - JOUR
AU  - I. Ya. Novikov
TI  - Compactly supported wavelets
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 955
EP  - 981
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a0/
LA  - ru
ID  - FPM_2001_7_4_a0
ER  - 
%0 Journal Article
%A I. Ya. Novikov
%T Compactly supported wavelets
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 955-981
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a0/
%G ru
%F FPM_2001_7_4_a0
I. Ya. Novikov. Compactly supported wavelets. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 955-981. http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a0/