Integral observation operators of nonlinear dynamical systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 735-760.

Voir la notice de l'article provenant de la source Math-Net.Ru

In terms of functional dependence we obtain a description of observable functions in nonlinear dynamical systems, which are analytical by phase variables. For measurements processing the integral operators are used. An analog of duality theory known for linear problems of observation and control is developed.
@article{FPM_2001_7_3_a8,
     author = {Yu. V. Zaika},
     title = {Integral observation operators of nonlinear dynamical systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {735--760},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a8/}
}
TY  - JOUR
AU  - Yu. V. Zaika
TI  - Integral observation operators of nonlinear dynamical systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 735
EP  - 760
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a8/
LA  - ru
ID  - FPM_2001_7_3_a8
ER  - 
%0 Journal Article
%A Yu. V. Zaika
%T Integral observation operators of nonlinear dynamical systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 735-760
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a8/
%G ru
%F FPM_2001_7_3_a8
Yu. V. Zaika. Integral observation operators of nonlinear dynamical systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 735-760. http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a8/