Integral observation operators of nonlinear dynamical systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 735-760
In terms of functional dependence we obtain a description of observable functions in nonlinear dynamical systems, which are analytical by phase variables. For measurements processing the integral operators are used. An analog of duality theory known for linear problems of observation and control is developed.
@article{FPM_2001_7_3_a8,
author = {Yu. V. Zaika},
title = {Integral observation operators of nonlinear dynamical systems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {735--760},
year = {2001},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a8/}
}
Yu. V. Zaika. Integral observation operators of nonlinear dynamical systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 735-760. http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a8/