On the complexity of figure growing in homogeneous structures
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 713-720.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with growing of some classes of figures in a class of flat homogeneous structures with a cross-like neighbourhood pattern. We estimate the number of cell states that are necessary and sufficient for such growing.
@article{FPM_2001_7_3_a6,
     author = {A. Dumov},
     title = {On the complexity of figure growing in homogeneous structures},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {713--720},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a6/}
}
TY  - JOUR
AU  - A. Dumov
TI  - On the complexity of figure growing in homogeneous structures
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 713
EP  - 720
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a6/
LA  - ru
ID  - FPM_2001_7_3_a6
ER  - 
%0 Journal Article
%A A. Dumov
%T On the complexity of figure growing in homogeneous structures
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 713-720
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a6/
%G ru
%F FPM_2001_7_3_a6
A. Dumov. On the complexity of figure growing in homogeneous structures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 713-720. http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a6/