Local contracted semigroup rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 939-944.

Voir la notice de l'article provenant de la source Math-Net.Ru

The local contracted semigroup rings $R_0S$ over non-radical rings $R$ ($\overline R=R/J(R)\ne\{0\}$) are under consideration. The following main statement is proved. Let $R$ be a ring, $\overline R\ne\{0\}$, $S$ be a semigroup with zero. The ring $R_0S$ is local if and only if: (i) there exists a nil ideal $N\subseteq S$ such that $S/N\cong T^0$ is a semigroup $T$ (without zero) with adjoint zero; (ii) $RT$ is local, $R_0N$ is radical.
@article{FPM_2001_7_3_a23,
     author = {A. V. Zhuchin},
     title = {Local contracted semigroup rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {939--944},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a23/}
}
TY  - JOUR
AU  - A. V. Zhuchin
TI  - Local contracted semigroup rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 939
EP  - 944
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a23/
LA  - ru
ID  - FPM_2001_7_3_a23
ER  - 
%0 Journal Article
%A A. V. Zhuchin
%T Local contracted semigroup rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 939-944
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a23/
%G ru
%F FPM_2001_7_3_a23
A. V. Zhuchin. Local contracted semigroup rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 939-944. http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a23/