An~approximation modulo~$s_2$ of isometrical operators and cocycle conjugacy of endomorphisms of the~CAR algebra
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 925-930
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the possibility of approximation modulo $s_2$ of isometrical operators in Hilbert space. Further we give the criterion of innerness of quasifree automorphisms of hyperfinfite factors $\mathcal M$ of type $\mathrm{II}_1$ and type $\mathrm{III}_{\lambda }$ generated by the representations of the algebra of canonical anticommutation relations (CAR). The results are used to describe cocycle conjugacy classes of quasifree shifts on hyperfinite factors of $\mathcal M$.
@article{FPM_2001_7_3_a20,
author = {G. G. Amosov},
title = {An~approximation modulo~$s_2$ of isometrical operators and cocycle conjugacy of endomorphisms of {the~CAR} algebra},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {925--930},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a20/}
}
TY - JOUR AU - G. G. Amosov TI - An~approximation modulo~$s_2$ of isometrical operators and cocycle conjugacy of endomorphisms of the~CAR algebra JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2001 SP - 925 EP - 930 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a20/ LA - ru ID - FPM_2001_7_3_a20 ER -
%0 Journal Article %A G. G. Amosov %T An~approximation modulo~$s_2$ of isometrical operators and cocycle conjugacy of endomorphisms of the~CAR algebra %J Fundamentalʹnaâ i prikladnaâ matematika %D 2001 %P 925-930 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a20/ %G ru %F FPM_2001_7_3_a20
G. G. Amosov. An~approximation modulo~$s_2$ of isometrical operators and cocycle conjugacy of endomorphisms of the~CAR algebra. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 925-930. http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a20/