On faithful conditional identities and conditionally complete conditional varieties
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 839-847
It is proved that for any faithful conditional variety $\mathfrak M$ with unique constant algebra there exist a conditionally complete conditional variety $\mathfrak M^{\mathrm c}$ and a polyinjective functor $F$ which isomorphically embedds the embedding category $\overset{\rightarrowtail}{\mathfrak M}$ into the embedding category $\overset{\rightarrowtail}{\mathfrak M^{\mathrm c}}$.
@article{FPM_2001_7_3_a14,
author = {A. G. Pinus},
title = {On faithful conditional identities and conditionally complete conditional varieties},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {839--847},
year = {2001},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a14/}
}
A. G. Pinus. On faithful conditional identities and conditionally complete conditional varieties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 839-847. http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a14/