Projective resolutions of simple modules for a class of Frobenius algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 637-650
Cet article a éte moissonné depuis la source Math-Net.Ru
An infinite series of nongroup symmetric algebras $R_n$, $n\geqslant1$, is constructed as quotient algebras of a path algebra of a quiver. For these algebras, it is shown that minimal projective resolution of a simple module may be obtained as the total complex of a double complex of the same shape.
@article{FPM_2001_7_3_a0,
author = {O. I. Balashov and A. I. Generalov},
title = {Projective resolutions of simple modules for a~class of {Frobenius} algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {637--650},
year = {2001},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a0/}
}
TY - JOUR AU - O. I. Balashov AU - A. I. Generalov TI - Projective resolutions of simple modules for a class of Frobenius algebras JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2001 SP - 637 EP - 650 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a0/ LA - ru ID - FPM_2001_7_3_a0 ER -
O. I. Balashov; A. I. Generalov. Projective resolutions of simple modules for a class of Frobenius algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 3, pp. 637-650. http://geodesic.mathdoc.fr/item/FPM_2001_7_3_a0/