On a class of complete intersection Calabi--Yau manifolds in toric manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 423-431.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the family of smooth $n$-dimensional toric manifolds generalizing the family of Hirzebruch surfaces to dimension $n$. We analyze conditions under which there exists a Calabi–Yau complete intersection of two ample hypersurfaces in these manifolds. This turns out to be possible only if the toric manifold is the product of projective spaces. If one of the hypersurfaces is not ample then we find Calabi–Yau complete intersection of two hypersurfaces in Fano manifolds of the given family.
@article{FPM_2001_7_2_a6,
     author = {A. V. Krotov and V. V. Rabotin},
     title = {On a class of complete intersection {Calabi--Yau} manifolds in toric manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {423--431},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a6/}
}
TY  - JOUR
AU  - A. V. Krotov
AU  - V. V. Rabotin
TI  - On a class of complete intersection Calabi--Yau manifolds in toric manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 423
EP  - 431
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a6/
LA  - ru
ID  - FPM_2001_7_2_a6
ER  - 
%0 Journal Article
%A A. V. Krotov
%A V. V. Rabotin
%T On a class of complete intersection Calabi--Yau manifolds in toric manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 423-431
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a6/
%G ru
%F FPM_2001_7_2_a6
A. V. Krotov; V. V. Rabotin. On a class of complete intersection Calabi--Yau manifolds in toric manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 423-431. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a6/