On a class of complete intersection Calabi–Yau manifolds in toric manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 423-431
We consider the family of smooth $n$-dimensional toric manifolds generalizing the family of Hirzebruch surfaces to dimension $n$. We analyze conditions under which there exists a Calabi–Yau complete intersection of two ample hypersurfaces in these manifolds. This turns out to be possible only if the toric manifold is the product of projective spaces. If one of the hypersurfaces is not ample then we find Calabi–Yau complete intersection of two hypersurfaces in Fano manifolds of the given family.
@article{FPM_2001_7_2_a6,
author = {A. V. Krotov and V. V. Rabotin},
title = {On a class of complete intersection {Calabi{\textendash}Yau} manifolds in toric manifolds},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {423--431},
year = {2001},
volume = {7},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a6/}
}
TY - JOUR AU - A. V. Krotov AU - V. V. Rabotin TI - On a class of complete intersection Calabi–Yau manifolds in toric manifolds JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2001 SP - 423 EP - 431 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a6/ LA - ru ID - FPM_2001_7_2_a6 ER -
A. V. Krotov; V. V. Rabotin. On a class of complete intersection Calabi–Yau manifolds in toric manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 423-431. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a6/