The moment functions for the solution of the heat equation with stochastic coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 351-371
The formulae of the mean value and the second moment function are obtained for the heat differential equation with stochastic coefficient at the higher derivative, stochastic initial condition and stochastic exterior perturbation. The formulae do not contain the continual integral and hold even for dependent stochastic processes. The expression for the mean value of the solution generalizes the well-known Poisson formula for the solution of the heat differential equation.
@article{FPM_2001_7_2_a3,
author = {V. G. Zadorozhniy},
title = {The~moment functions for the~solution of the~heat equation with stochastic coefficients},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {351--371},
year = {2001},
volume = {7},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a3/}
}
TY - JOUR AU - V. G. Zadorozhniy TI - The moment functions for the solution of the heat equation with stochastic coefficients JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2001 SP - 351 EP - 371 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a3/ LA - ru ID - FPM_2001_7_2_a3 ER -
V. G. Zadorozhniy. The moment functions for the solution of the heat equation with stochastic coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 351-371. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a3/