Noetherianness of convolution operators with coefficients on quotient groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 631-634
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we study Noetherianness of convolution operators on the groups of slow growth with absolutely summable kernel and coefficients in a new class. The coefficients are the superpositions of canonic quotient-homomorphisms and functions on quotient groups. The key step is the construction of a special compactification of the topological group.
@article{FPM_2001_7_2_a19,
author = {B. J. Steinberg},
title = {Noetherianness of convolution operators with coefficients on quotient groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {631--634},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a19/}
}
TY - JOUR AU - B. J. Steinberg TI - Noetherianness of convolution operators with coefficients on quotient groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2001 SP - 631 EP - 634 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a19/ LA - ru ID - FPM_2001_7_2_a19 ER -
B. J. Steinberg. Noetherianness of convolution operators with coefficients on quotient groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 631-634. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a19/