Injective modules over the~ring of pseudo-rational numbers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 627-629.

Voir la notice de l'article provenant de la source Math-Net.Ru

An element of a direct product of rings of $p$-adic integer over all prime numbers $p$ belongs to a subring $R$ of pseudo-rational numbers if almost all its components are equal to one rational number. The concept of such ring was introduced by A. A. Fomin. In this article the description of injective modules over the ring of pseudo-rational numbers is given.
@article{FPM_2001_7_2_a18,
     author = {S. V. Cheglyakova},
     title = {Injective modules over the~ring of pseudo-rational numbers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {627--629},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a18/}
}
TY  - JOUR
AU  - S. V. Cheglyakova
TI  - Injective modules over the~ring of pseudo-rational numbers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 627
EP  - 629
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a18/
LA  - ru
ID  - FPM_2001_7_2_a18
ER  - 
%0 Journal Article
%A S. V. Cheglyakova
%T Injective modules over the~ring of pseudo-rational numbers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 627-629
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a18/
%G ru
%F FPM_2001_7_2_a18
S. V. Cheglyakova. Injective modules over the~ring of pseudo-rational numbers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 627-629. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a18/