Injective modules over the~ring of pseudo-rational numbers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 627-629
Voir la notice de l'article provenant de la source Math-Net.Ru
An element of a direct product of rings of $p$-adic integer over all prime numbers $p$ belongs to a subring $R$ of pseudo-rational numbers if almost all its components are equal to one rational number. The concept of such ring was introduced by A. A. Fomin. In this article the description of injective modules over the ring of pseudo-rational numbers is given.
@article{FPM_2001_7_2_a18,
author = {S. V. Cheglyakova},
title = {Injective modules over the~ring of pseudo-rational numbers},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {627--629},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a18/}
}
S. V. Cheglyakova. Injective modules over the~ring of pseudo-rational numbers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 627-629. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a18/