Logarithmic analog of Leibnitz series and some integrals connected with the Riemann zeta function
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 615-619
Voir la notice de l'article provenant de la source Math-Net.Ru
A new expression for the analog of the Leibnitz series with alternating signs, which contains the multipliers depending on the logarithm of the term's number, is obtained. The values of some definite integrals connected with the above series are found.
@article{FPM_2001_7_2_a16,
author = {Yu. I. Babenko and A. I. Moshinskii},
title = {Logarithmic analog of {Leibnitz} series and some integrals connected with the {Riemann} zeta function},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {615--619},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a16/}
}
TY - JOUR AU - Yu. I. Babenko AU - A. I. Moshinskii TI - Logarithmic analog of Leibnitz series and some integrals connected with the Riemann zeta function JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2001 SP - 615 EP - 619 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a16/ LA - ru ID - FPM_2001_7_2_a16 ER -
%0 Journal Article %A Yu. I. Babenko %A A. I. Moshinskii %T Logarithmic analog of Leibnitz series and some integrals connected with the Riemann zeta function %J Fundamentalʹnaâ i prikladnaâ matematika %D 2001 %P 615-619 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a16/ %G ru %F FPM_2001_7_2_a16
Yu. I. Babenko; A. I. Moshinskii. Logarithmic analog of Leibnitz series and some integrals connected with the Riemann zeta function. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 615-619. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a16/