Spectral problems associated with stability of fluid motion in an annulus in a magnetic field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 583-596
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper investigates spectral and basis property of operator pencil connected with the problem of stability of an axisymmetrically perturbed fluid motion in vertical annulus in the presence of vertical magnetic field. It is proved that eigenfunctions of this pencil form a Bari basis in the corresponding Hilbert space.
@article{FPM_2001_7_2_a14,
author = {I. A. Sheipak},
title = {Spectral problems associated with stability of fluid motion in an annulus in a magnetic field},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {583--596},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a14/}
}
TY - JOUR AU - I. A. Sheipak TI - Spectral problems associated with stability of fluid motion in an annulus in a magnetic field JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2001 SP - 583 EP - 596 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a14/ LA - ru ID - FPM_2001_7_2_a14 ER -
I. A. Sheipak. Spectral problems associated with stability of fluid motion in an annulus in a magnetic field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 583-596. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a14/