Spectral problems associated with stability of fluid motion in an annulus in a magnetic field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 583-596.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates spectral and basis property of operator pencil connected with the problem of stability of an axisymmetrically perturbed fluid motion in vertical annulus in the presence of vertical magnetic field. It is proved that eigenfunctions of this pencil form a Bari basis in the corresponding Hilbert space.
@article{FPM_2001_7_2_a14,
     author = {I. A. Sheipak},
     title = {Spectral problems associated with stability of fluid motion in an annulus in a magnetic field},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {583--596},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a14/}
}
TY  - JOUR
AU  - I. A. Sheipak
TI  - Spectral problems associated with stability of fluid motion in an annulus in a magnetic field
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 583
EP  - 596
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a14/
LA  - ru
ID  - FPM_2001_7_2_a14
ER  - 
%0 Journal Article
%A I. A. Sheipak
%T Spectral problems associated with stability of fluid motion in an annulus in a magnetic field
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 583-596
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a14/
%G ru
%F FPM_2001_7_2_a14
I. A. Sheipak. Spectral problems associated with stability of fluid motion in an annulus in a magnetic field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 583-596. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a14/