Non-commutative Gr\"obner bases, coherentness of associative algebras, and divisibility in semigroups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 495-513.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider a class of associative algebras which are denoted by algebras with $R$-processing. This class includes free algebras, finitely-defined monomial algebras, and semigroup algebras for some monoids. A sufficient condition for $A$ to be an algebra with $R$-processing is formulated in terms of a special graph, which includes a part of information about overlaps between monomials forming the reduced Gröbner basis for a syzygy ideal of $A$ (for monoids, this graph includes the information about overlaps between right and left parts of suitable string-rewriting system). Every finitely generated right ideal in an algebra with $R$-processing has a finite Gröbner basis, and the right syzygy module of the ideal is finitely generated, i. e. every such algebra is coherent. In such algebras, there exist algorithms for computing a Gröbner basis for a right ideal, for the membership test for a right ideal, for zero-divisor test, and for solving systems of linear equations. In particular, in a monoid with $R$-processing there exist algorithms for word equivalence test and for left-divisor test as well.
@article{FPM_2001_7_2_a10,
     author = {D. I. Piontkovskii},
     title = {Non-commutative {Gr\"obner} bases, coherentness of associative algebras, and divisibility in semigroups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {495--513},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a10/}
}
TY  - JOUR
AU  - D. I. Piontkovskii
TI  - Non-commutative Gr\"obner bases, coherentness of associative algebras, and divisibility in semigroups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 495
EP  - 513
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a10/
LA  - ru
ID  - FPM_2001_7_2_a10
ER  - 
%0 Journal Article
%A D. I. Piontkovskii
%T Non-commutative Gr\"obner bases, coherentness of associative algebras, and divisibility in semigroups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 495-513
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a10/
%G ru
%F FPM_2001_7_2_a10
D. I. Piontkovskii. Non-commutative Gr\"obner bases, coherentness of associative algebras, and divisibility in semigroups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 495-513. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a10/