Optimal control of security portfolio
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 329-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finding an optimal strategy for the security portfolio during a given period is formulated as a problem of linear programming. It is shown that if the restrictions on the risk or on the buy/sale volumes are omitted then the problem is decomposed into some “one-stock” problems. This fact permits one to reduce the calculation complexity of the whole problem. Finally, for the optimization problem with the restrictions on the risk an approximate method is presented.
@article{FPM_2001_7_2_a1,
     author = {M. A. Gil'man and E. E. Demidov and A. G. Mikheev},
     title = {Optimal control of security portfolio},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {329--337},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a1/}
}
TY  - JOUR
AU  - M. A. Gil'man
AU  - E. E. Demidov
AU  - A. G. Mikheev
TI  - Optimal control of security portfolio
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 329
EP  - 337
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a1/
LA  - ru
ID  - FPM_2001_7_2_a1
ER  - 
%0 Journal Article
%A M. A. Gil'man
%A E. E. Demidov
%A A. G. Mikheev
%T Optimal control of security portfolio
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 329-337
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a1/
%G ru
%F FPM_2001_7_2_a1
M. A. Gil'man; E. E. Demidov; A. G. Mikheev. Optimal control of security portfolio. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 2, pp. 329-337. http://geodesic.mathdoc.fr/item/FPM_2001_7_2_a1/