Maximum size of a planar graph ($\Delta=3$, $D=3$)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 159-171
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of maximum size of a graph of diameter 3 and maximum degree 3 as a function of its Euler characteristics is studied. The negative solution of an Erdös problem is obtained. A new approach to such problems is proposed which consists in counting the paths between different pairs of vertices in a graph.
@article{FPM_2001_7_1_a9,
author = {S. A. Tishchenko},
title = {Maximum size of a planar graph ($\Delta=3$, $D=3$)},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {159--171},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a9/}
}
S. A. Tishchenko. Maximum size of a planar graph ($\Delta=3$, $D=3$). Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 159-171. http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a9/