Maximum size of a planar graph ($\Delta=3$, $D=3$)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 159-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of maximum size of a graph of diameter 3 and maximum degree 3 as a function of its Euler characteristics is studied. The negative solution of an Erdös problem is obtained. A new approach to such problems is proposed which consists in counting the paths between different pairs of vertices in a graph.
@article{FPM_2001_7_1_a9,
     author = {S. A. Tishchenko},
     title = {Maximum size of a planar graph ($\Delta=3$, $D=3$)},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--171},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a9/}
}
TY  - JOUR
AU  - S. A. Tishchenko
TI  - Maximum size of a planar graph ($\Delta=3$, $D=3$)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 159
EP  - 171
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a9/
LA  - ru
ID  - FPM_2001_7_1_a9
ER  - 
%0 Journal Article
%A S. A. Tishchenko
%T Maximum size of a planar graph ($\Delta=3$, $D=3$)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 159-171
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a9/
%G ru
%F FPM_2001_7_1_a9
S. A. Tishchenko. Maximum size of a planar graph ($\Delta=3$, $D=3$). Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 159-171. http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a9/