The~Cesaro average for orthogonal-like decomposition systems with non-negative measure
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 105-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that in case of orthogonal-like decomposition systems with non-negative measure the Abel–Poisson's method of summation is equivalent to positive Cesaro's methods for convergence almost everywhere. A criterion for summability of a sequence of partial integrals almost everywhere is given.
@article{FPM_2001_7_1_a6,
     author = {A. N. Pavlikov},
     title = {The~Cesaro average for orthogonal-like decomposition systems with non-negative measure},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {105--119},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a6/}
}
TY  - JOUR
AU  - A. N. Pavlikov
TI  - The~Cesaro average for orthogonal-like decomposition systems with non-negative measure
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 105
EP  - 119
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a6/
LA  - ru
ID  - FPM_2001_7_1_a6
ER  - 
%0 Journal Article
%A A. N. Pavlikov
%T The~Cesaro average for orthogonal-like decomposition systems with non-negative measure
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 105-119
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a6/
%G ru
%F FPM_2001_7_1_a6
A. N. Pavlikov. The~Cesaro average for orthogonal-like decomposition systems with non-negative measure. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 105-119. http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a6/