The~Cesaro average for orthogonal-like decomposition systems with non-negative measure
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 105-119
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that in case of orthogonal-like decomposition systems with non-negative measure the Abel–Poisson's method of summation is equivalent to positive Cesaro's methods for convergence almost everywhere. A criterion for summability of a sequence of partial integrals almost everywhere is given.
@article{FPM_2001_7_1_a6,
author = {A. N. Pavlikov},
title = {The~Cesaro average for orthogonal-like decomposition systems with non-negative measure},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {105--119},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a6/}
}
TY - JOUR AU - A. N. Pavlikov TI - The~Cesaro average for orthogonal-like decomposition systems with non-negative measure JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2001 SP - 105 EP - 119 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a6/ LA - ru ID - FPM_2001_7_1_a6 ER -
A. N. Pavlikov. The~Cesaro average for orthogonal-like decomposition systems with non-negative measure. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 105-119. http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a6/