Ideal lattice isomorphisms of semigroups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 87-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lattice isomorphism $\psi$ of a semigroup $S$ upon a semigroup $T$ is called an ideal lattice isomorphism if it induces a bijection of the set of ideals of $S$ onto the corresponding set of $T$. Left and right ideal lattice isomorphisms are defined in a similar way. The order on idempotents and the property of being a subgroup are proved to retain under lattice isomorphisms of these kinds. The property of a semigroup of being decomposable in a semilattice of Archimedean semigroups is retained as well. Mappings that induce ideal lattice isomorphisms of idempotent semigroups are described. In particular, each left ideal or right ideal lattice isomorphism of an idempotent semigroup is induced by an isomorphism.
@article{FPM_2001_7_1_a5,
     author = {A. Ya. Ovsyannikov},
     title = {Ideal lattice isomorphisms of semigroups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {87--103},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a5/}
}
TY  - JOUR
AU  - A. Ya. Ovsyannikov
TI  - Ideal lattice isomorphisms of semigroups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 87
EP  - 103
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a5/
LA  - ru
ID  - FPM_2001_7_1_a5
ER  - 
%0 Journal Article
%A A. Ya. Ovsyannikov
%T Ideal lattice isomorphisms of semigroups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 87-103
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a5/
%G ru
%F FPM_2001_7_1_a5
A. Ya. Ovsyannikov. Ideal lattice isomorphisms of semigroups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 87-103. http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a5/