Bounds for the~number of occurrences of elements in a~linear recurring sequence over a~Galois ring
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1083-1094
Voir la notice de l'article provenant de la source Math-Net.Ru
The number of occurrences of $r$-tuples in the cycle of a linear recurring sequence over a Galois ring is considered. In the special case when the characteristic polynomial of linear recurring sequence is a monic basic irreducible polynomial, we give an upper bound for modulus of difference between the number of occurrences of $r$-tuples in the linear recurring sequence and uniform distributed sequence. In some cases this bound is better than other results which have been obtained for linear recurring sequences of maximal period over residue rings of primary order.
@article{FPM_2000_6_4_a8,
author = {O. V. Kamlovskii and A. S. Kuz'min},
title = {Bounds for the~number of occurrences of elements in a~linear recurring sequence over {a~Galois} ring},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1083--1094},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a8/}
}
TY - JOUR AU - O. V. Kamlovskii AU - A. S. Kuz'min TI - Bounds for the~number of occurrences of elements in a~linear recurring sequence over a~Galois ring JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 1083 EP - 1094 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a8/ LA - ru ID - FPM_2000_6_4_a8 ER -
%0 Journal Article %A O. V. Kamlovskii %A A. S. Kuz'min %T Bounds for the~number of occurrences of elements in a~linear recurring sequence over a~Galois ring %J Fundamentalʹnaâ i prikladnaâ matematika %D 2000 %P 1083-1094 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a8/ %G ru %F FPM_2000_6_4_a8
O. V. Kamlovskii; A. S. Kuz'min. Bounds for the~number of occurrences of elements in a~linear recurring sequence over a~Galois ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1083-1094. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a8/