Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1263-1268.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a sufficient condition for existence of an almost everywhere convergent rearrangement of series with respect to a system similar to orthogonal one.
@article{FPM_2000_6_4_a22,
     author = {T. V. Rodionov},
     title = {Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1263--1268},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a22/}
}
TY  - JOUR
AU  - T. V. Rodionov
TI  - Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 1263
EP  - 1268
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a22/
LA  - ru
ID  - FPM_2000_6_4_a22
ER  - 
%0 Journal Article
%A T. V. Rodionov
%T Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 1263-1268
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a22/
%G ru
%F FPM_2000_6_4_a22
T. V. Rodionov. Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1263-1268. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a22/