Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1263-1268
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a sufficient condition for existence of an almost everywhere convergent rearrangement of series with respect to a system similar to orthogonal one.
@article{FPM_2000_6_4_a22,
author = {T. V. Rodionov},
title = {Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1263--1268},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a22/}
}
TY - JOUR AU - T. V. Rodionov TI - Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 1263 EP - 1268 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a22/ LA - ru ID - FPM_2000_6_4_a22 ER -
%0 Journal Article %A T. V. Rodionov %T Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones %J Fundamentalʹnaâ i prikladnaâ matematika %D 2000 %P 1263-1268 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a22/ %G ru %F FPM_2000_6_4_a22
T. V. Rodionov. Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1263-1268. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a22/