On ergodicity of a~system with two types of interacting particles
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 985-993
Voir la notice de l'article provenant de la source Math-Net.Ru
A system with two types of particles placed in $N$ cells is considered. The first type particles arrive at the system in accordance with a Poisson process. There are $V$ particles of the second type in the system, which destroy the first type particles. The ergodicity condition for the Markov chain which describes the behaviour of the system is proved.
@article{FPM_2000_6_4_a2,
author = {L. G. Afanas'eva and E. M. Ginzburg},
title = {On ergodicity of a~system with two types of interacting particles},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {985--993},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a2/}
}
TY - JOUR AU - L. G. Afanas'eva AU - E. M. Ginzburg TI - On ergodicity of a~system with two types of interacting particles JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 985 EP - 993 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a2/ LA - ru ID - FPM_2000_6_4_a2 ER -
L. G. Afanas'eva; E. M. Ginzburg. On ergodicity of a~system with two types of interacting particles. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 985-993. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a2/