On ergodicity of a system with two types of interacting particles
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 985-993 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system with two types of particles placed in $N$ cells is considered. The first type particles arrive at the system in accordance with a Poisson process. There are $V$ particles of the second type in the system, which destroy the first type particles. The ergodicity condition for the Markov chain which describes the behaviour of the system is proved.
@article{FPM_2000_6_4_a2,
     author = {L. G. Afanas'eva and E. M. Ginzburg},
     title = {On ergodicity of a~system with two types of interacting particles},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {985--993},
     year = {2000},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a2/}
}
TY  - JOUR
AU  - L. G. Afanas'eva
AU  - E. M. Ginzburg
TI  - On ergodicity of a system with two types of interacting particles
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 985
EP  - 993
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a2/
LA  - ru
ID  - FPM_2000_6_4_a2
ER  - 
%0 Journal Article
%A L. G. Afanas'eva
%A E. M. Ginzburg
%T On ergodicity of a system with two types of interacting particles
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 985-993
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a2/
%G ru
%F FPM_2000_6_4_a2
L. G. Afanas'eva; E. M. Ginzburg. On ergodicity of a system with two types of interacting particles. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 985-993. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a2/