Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1229-1238
Voir la notice de l'article provenant de la source Math-Net.Ru
A set of nonzero pairwise distinct elements of a free algebra $F$ is said to be a primitive system of elements if it is a subset of some set of free generators of $F$. The rank of $U\subset F$ is the smallest number of free generators of $F$ on which elements of the set $\phi(U)$ depend, where $\phi$ runs through the automorphism group of $F$ (in other words, it is the smallest rank of a free factor of $F$ containing $U$). We consider free non-associative algebras, free commutative non-associative algebras, and free anti-commutative non-associative algebras. We construct the algorithm 1 to realize the rank of a homogeneous element of these free algebras. The algorithm 2 for the general case is presented. The problem is decomposed into homogeneous parts. Next, algorithm 3 constructs an automorphism realizing the rank of a system of elements reducing it to the case of one element. Finally, algorithms 4 and 5 deal with a system of primitive elements. The algorithm 4 presents an automorphism converting it into a part of a system of free generators of the algebra. And the algorithm 5 constructs a complement of a primitive system with respect to a free generating set of the whole free algebra.
@article{FPM_2000_6_4_a17,
author = {K. Champagnier},
title = {Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1229--1238},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a17/}
}
TY - JOUR AU - K. Champagnier TI - Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 1229 EP - 1238 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a17/ LA - ru ID - FPM_2000_6_4_a17 ER -
%0 Journal Article %A K. Champagnier %T Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras %J Fundamentalʹnaâ i prikladnaâ matematika %D 2000 %P 1229-1238 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a17/ %G ru %F FPM_2000_6_4_a17
K. Champagnier. Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1229-1238. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a17/