Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1229-1238.

Voir la notice de l'article provenant de la source Math-Net.Ru

A set of nonzero pairwise distinct elements of a free algebra $F$ is said to be a primitive system of elements if it is a subset of some set of free generators of $F$. The rank of $U\subset F$ is the smallest number of free generators of $F$ on which elements of the set $\phi(U)$ depend, where $\phi$ runs through the automorphism group of $F$ (in other words, it is the smallest rank of a free factor of $F$ containing $U$). We consider free non-associative algebras, free commutative non-associative algebras, and free anti-commutative non-associative algebras. We construct the algorithm 1 to realize the rank of a homogeneous element of these free algebras. The algorithm 2 for the general case is presented. The problem is decomposed into homogeneous parts. Next, algorithm 3 constructs an automorphism realizing the rank of a system of elements reducing it to the case of one element. Finally, algorithms 4 and 5 deal with a system of primitive elements. The algorithm 4 presents an automorphism converting it into a part of a system of free generators of the algebra. And the algorithm 5 constructs a complement of a primitive system with respect to a free generating set of the whole free algebra.
@article{FPM_2000_6_4_a17,
     author = {K. Champagnier},
     title = {Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1229--1238},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a17/}
}
TY  - JOUR
AU  - K. Champagnier
TI  - Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 1229
EP  - 1238
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a17/
LA  - ru
ID  - FPM_2000_6_4_a17
ER  - 
%0 Journal Article
%A K. Champagnier
%T Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 1229-1238
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a17/
%G ru
%F FPM_2000_6_4_a17
K. Champagnier. Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1229-1238. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a17/