On decidability of the~equational theories of ring varieties of finite characteristic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1193-1203
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for every natural number $n>1$ there exists a finitely based variety $\mathfrak X_n$ of (not necessarily associative) rings such that $\mathfrak X_n\models nx=0$, $\mathfrak X_n\not\models mx=0$ for every natural number $m$, and the equational theory $\mathfrak X_n$ is undecidable.
@article{FPM_2000_6_4_a14,
author = {V. Yu. Popov},
title = {On decidability of the~equational theories of ring varieties of finite characteristic},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1193--1203},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a14/}
}
TY - JOUR AU - V. Yu. Popov TI - On decidability of the~equational theories of ring varieties of finite characteristic JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 1193 EP - 1203 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a14/ LA - ru ID - FPM_2000_6_4_a14 ER -
V. Yu. Popov. On decidability of the~equational theories of ring varieties of finite characteristic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1193-1203. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a14/