On decidability of the~equational theories of ring varieties of finite characteristic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1193-1203.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for every natural number $n>1$ there exists a finitely based variety $\mathfrak X_n$ of (not necessarily associative) rings such that $\mathfrak X_n\models nx=0$, $\mathfrak X_n\not\models mx=0$ for every natural number $m$, and the equational theory $\mathfrak X_n$ is undecidable.
@article{FPM_2000_6_4_a14,
     author = {V. Yu. Popov},
     title = {On decidability of the~equational theories of ring varieties of finite characteristic},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1193--1203},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a14/}
}
TY  - JOUR
AU  - V. Yu. Popov
TI  - On decidability of the~equational theories of ring varieties of finite characteristic
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 1193
EP  - 1203
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a14/
LA  - ru
ID  - FPM_2000_6_4_a14
ER  - 
%0 Journal Article
%A V. Yu. Popov
%T On decidability of the~equational theories of ring varieties of finite characteristic
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 1193-1203
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a14/
%G ru
%F FPM_2000_6_4_a14
V. Yu. Popov. On decidability of the~equational theories of ring varieties of finite characteristic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1193-1203. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a14/