On symmetry of some Runge--Kutta methods
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1131-1140.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we investigate the property of symmetry for Runge–Kutta methods. We prove that methods possessing such property are fully implicit, and they can be constructed by the Gauss and Lobatto quadrature formulas. But only the Gauss formulas give algebraically stable Runge–Kutta methods.
@article{FPM_2000_6_4_a11,
     author = {G. Yu. Kulikov},
     title = {On symmetry of some {Runge--Kutta} methods},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1131--1140},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a11/}
}
TY  - JOUR
AU  - G. Yu. Kulikov
TI  - On symmetry of some Runge--Kutta methods
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 1131
EP  - 1140
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a11/
LA  - ru
ID  - FPM_2000_6_4_a11
ER  - 
%0 Journal Article
%A G. Yu. Kulikov
%T On symmetry of some Runge--Kutta methods
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 1131-1140
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a11/
%G ru
%F FPM_2000_6_4_a11
G. Yu. Kulikov. On symmetry of some Runge--Kutta methods. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1131-1140. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a11/